115. Indices de rétention de cycloalcanes, cycloalcènes, bicycloalkyles, cycloalkyl-cycloalcényles et bicycloalcényles en chromatographie en phase gazeuse

par Richard Besson et Tino Gäumann

Institut de chimie-physique de l'EPF Lausanne

(13 II 72)

Summary. The retention indices for cycloalkanes, cycloalkenes and bicyclic compounds have been measured as a function of temperature for different liquids phases. The diastereomeric bicycloalkenyl-2 were separated. Some rules concerning the indices are given.

1. Introduction. – La chromatographie en phase gazeuse est une des méthodes les plus employées pour l'analyse d'hydrocarbures et de corps plus ou moins volatils. La connaissance du temps de rétention ou de l'indice de rétention selon *Kováts* est primordiale pour l'identification des corps élués [1]. Dans ce travail on s'est occupé des cycloalcanes de C_5 à C_8 , des cycloalcènes de C_5 à C_8 et de certains composés bicycliques résultant de la dimérisation de radicaux provenant de ces différentes corps. On a étudié leurs indices de rétention sur 7 phases stationnaires à différentes températures. On en a déduit une relation entre leur structure et leur indice.

2. Partie expérimentale. – Les produits monocycliques étaient de qualité Fluka purum (99%). Les cycloalcènes ont été redistillés sous azote avant leur emploi. Les substances dimères ont été synthétisées par voie photochimique en irradiant des solutions de cycloalcanes et cycloalcènes contenant de la benzophénone. Certains dimères se trouvent dans le commerce (bicyclohexyle); d'autres (le 3,3'-bicyclohexényle par ex.) ont été synthétisés au laboratoire par action de Mg sur des halogénures d'alkyle ou d'alcényle appropriés. Leur structure a été confirmée par spectrométrie de masse et spectroscopie infrarouge. Les colonnes de chromatographie utilisées avaient les caractéristiques suivantes:

		a) capillaires	
1)	SQUALANE	Perkin-Elmer colonne U	0,25 mm ø 50 m
2)	APIEZON-L	Perkin-Elmer colonne Ap-L	0,25 mm ø 50 m
3)	DOW CORNING 550	Perkin-Elmer colonne DC 550	0,25 mm Ø 50 m
4)	UCON LB 550-X	Perkin-Elmer colonne R	0,25 mm Ø 50 m
5)	<i>m</i> -bis(phenoxyphenoxy)-benzène	MBMA	0,25 mm Ø 50 m
	+ Ap-L 4:1		
		b) à remplissage	

, 1 0	
6) TCEP: tris(2-cyanoéthoxy)-propane-1, 2, 3 (6% sur Kieselgur)	3 m
7) TCDBP: Tetrachlorophthalate de dibutyle (10% sur Célite)	2,50 m
1-5): Appareil Perkin-Elmer 226, gaz porteur N_2 , détecteur FID	

6-7): Appareil Pye 104, Gaz porteur, détecteur FID

Les *n*-alcanes de référence ont été ajoutés à la solution à chromatographier. Le temps mort a été déterminé par ajustement de 3 alcanes [2].

3. Résultats. – Pour la suite nous employerons la nomenclature suivante:

$5a = cyclopentyle C_5H_9$.	$5e = cyclopentényl-3 C_5H_7$.
$6a = cyclohexyle C_{6}H_{11}$.	$6e = cyclohexényl-3 C_{e}H_{g}$.
$7a = cycloheptyle C_7H_{13}$.	$7e = cycloheptényl-3 C_7H_{11}$.
$8a = cyclooctyle C_8H_{15}$.	$8e = cyclooctényl-3$ (cis) C_8H_{13} .

Dans le cas des colonnes capillaires une reproductibilité de 0,5 unité sur les indices nous permet de les donner arrondis à l'unité. Dans le cas des colonnes à remplissage cette reproductibilité est moins bonne (environ 2 unités). Les valeurs des tableaux 1 et 2a sont en accord avec celles d'autres auteurs [3]-[6]. Bien que l'indice de rétention

Phase	cycloalc	anes			cycloalcènes			
stationnaire	$\overline{C_5H_{10}}$	$C_{\boldsymbol{6}}H_{12}$	C7H14	C_8H_{16}	$\overline{C_{\delta}H_8}$	C ₆ H ₁₀	C7H12	C ₈ H ₁₄
SQUALANE	573	674	811	933	557	683	794	904
APIEZON-L	588	689	829	957	572	702	815	931
DC 550	601	695	834	963	5 90	720	832	947
TCDBP	581	683	829	961	598	729	839	958
R	602	696	836	964	608	733	841	958
MBMA	617	714	868	994	621	755	868	985
TCEP	712	814	997	1153	798	958	1083	1213

Tableau 1. Indices de rétention des cycloalcanes et cycloalcènes à 100°

Tableau 2a. Indices de rétention des bicycloalkyles, bicycloalcènes cycloalkyl-cycloalcényles 100°

composé		phases								
		SQUALA	NE ApL	DC 550	TCDBP	R	MBMA	TCEP		
C ₁₀ H ₁₄	5e-5e ^a)	1041	1070	1095	1120	1121	1145	1437		
C ₁₀ H ₁₆	5e-5a	1066	1094	1101		11 2 4	1148	1379		
C10H18	5a-5a	1086	1113	1105	1117	1126	1150	1315		
C ₁₁ H ₁₆	5е-бе ^в)	1172	1208	1233	1255	1257	1287	1567		
C11H18	5e-6a	117 0	1204	1216	1229	1 231	1264	147 8		
C ₁₁ H ₁₈	5a-6e	1192	1227	1240	-	1256	1288	_		
C11H20	5a-6 a	12 10	1225	1221	1226	1230	1260	1420		
C ₁₂ H ₁₈	5e- 7 e ª)	1275	1315	1339	_	1361	1394	1682		
C12H18	бе-бе »)	1 3 01	1 3 40	1367	1 384	1388	1428	1603		
C12H20	6e-6a	1299	1336	1350	1358	13 64	1403	1553		
C ₁₂ H ₂₂	5a- 7a	1310	1342	1344	1357	1357	1395	1514		
C ₁₂ H ₂₂	6a- 6a	1295	1327	1329	1328	1334	13 71			
C ₁₃ H ₂₀	6e-7e ^a)	1 417	1449	1473	1484	1495	1533	_		
C13H20	5е-8е ^в)	-	1402	1428		1448	1480			
C13H22	6a- 7 e	14 31	1445	1457	1455	1467	1503			
C13H24	6a- 7a		1459	1451	1456	146 0	1502	1651		
C14H22	7e-7eª)	_	1556	1583	1590	1590	1 63 6	-		
C14H22	6c-8e ª)	-	1535	156 0		1580	1619	~		
C14H26	7a-7a	1534	1585	1574	1588	1586	1634	1784		
C ₁₅ H ₂₄	7e-8eª)	_	1635	1660		1679	1 721			
C15H24	6е- 9е ^в)	_	1637	16 56		-	-			
C ₁₆ H ₂₆	8e-8e ª)		1737	1752		1770	1811			
C16H30	8a-8a	-	1808	1806	_		18 5 8	-		
C18H30	9e-9e ^в)	_	1944	1960						
C ₁₈ H ₃₄	9a-9 a	-	2021	2010	-	-	-	-		

a) L'indice indiqué est la moyenne arithmétique de deux formes diastéréomères.

soit une fonction hyberbolique de la température [7], on peut admettre, dans un domaine restreint, une dépendance linéaire [8]–[9]. La variation des indices en fonction de la température a été calculée par regression linéaire sur 4 températures, dans un intervalle de 60°. Ces coefficients sont sensiblement les mêmes, à nombre d'atomes de C égal, quelle que soit la structure des cycles en question (tableau 2b).

	Composés										
phase	$\overline{\text{en } C_{10}}$	C ₁₁	C ₁₂	С ₁₃	C ₁₄	С ₁₅	C ₁₆	C ₁₈			
SQUALANE		4,9	6,2		_	_	_				
Ap-L	5,0	6,7	8,0	9,2	9,5	11,0	11,7	12,5			
DC 550	4,4	6,1	7,4	8,3	9,2	10,2	11,3				
R	5,0	6,2	7,2	7,9	8,3	10,2	11,1				
MBMA	6,6	7,8	9,1	9,4	10,7	12,1	14,9				
		Ces co	efficients e	xpriment	$10 \times \frac{\partial I}{\partial T}$						

Tableau 2b. Coefficients de température des dimères du tableau 2a

4. Discussion. – 4.1. Indices. A partir de l'indice d'un composé bicyclique symétrique, on admet que la contribution d'un cycle est la moitié de la valeur de l'indice (tableau 3). On peut ensuite calculer l'indice d'un composé asymétrique par addition des contributions de chaque cycle. Cette régle énoncée par Kováts [10] est bien vérifiée.

Phase	cycloa	lkyle	kyle				cycloal cé nyle			
stationnaire	C_5H_9	C ₆ H ₁₁	C7H13	C ₈ H ₁₅	C ₉ H ₁₇	$C_{5}H_{7}$	C ₆ H ₉	C7H11	C ₈ H ₁₃	C ₉ H ₁₅
SQUALANE	543	647	767	_		520	650	_	_	
APIEZON-L	557	663	792	904	1010	535	67 0	778	863	972
DC 550	557	664	787	803	1005	547	683	791	8 7 6	980
TCDBP	558	662	794	_		560	692	_	883	
R	563	667	793	_	_	561	694	795	885	
MBMA	575	685	817	929	-	572	714	818	9 06	
TCEP	658	757	892	-		718	841	_		

Tableau 3. Contribution de chaque type de cycle sur les composés bicycliques à 100°

On s'aperçoit que la contribution d'un type de cycle (tableau 3) est plus faible que l'indice du composé monocyclique correspondant (tableau 1). Ces écarts ont, pour un type de cycle sensiblement la même valeur quelle que soit la phase stationnaire (sauf TCEP), soit:

37 pour C ₅ H ₁₀	27 pour C ₆ H ₁₂	44 pour C ₇ H ₁₄	$60 \text{ pour } C_8 H_{16}$
42 pour C ₅ H ₈	36 pour C ₆ H ₁₀	44 pour C_7H_{12}	73 pour C ₈ H ₁₄

On remarque que le cycle à six atomes de carbone est celui dont les différences sont les plus faibles.

Les composés bicycliques ayant deux doubles liaisons en positions 2 et 2' présentent un doublet dans le chromatogramme des colonnes capillaires. En effet, ils peuvent exister sous deux formes diastéréomères. En s'intéressant à leurs différences, on obtient les valeurs du tableau 4. Les pics correspondants au 5e-7e et 7e-7e ne sont pas dédoublés. Ils présentent néanmoins une largeur de pic anormale pour un corps pur, ce qui permet d'affirmer que les deux formes diastéréomères sont présentes et mal séparées. En reportant la différence d'indice entre les 2 formes méso et dl en fonction du nombre de C dans le cycle, on obtient le graphique 1. Pour cela, nous avons postulé qu'il y avait un croisement entre le temps de sortie des 2 formes. C'est-à-dire que la forme sortant la première pour 5e-5e et 6e-6e sortait en deuxième pour les formes 7e-8e et 8e-8e. On pourrait vérifier ceci, soit en chromatographiant un des deux stéréomères seul, soit en récupérant séparément à la sortie du chromatographe les deux formes et en les analysant par NMR.

	SQUALANE	APIEZON-L	DC 550	R	MBMA
5e-5e	2,0	2,3	3,8	6,0	6,0
5е-бе	2,1	3,4	3,6	6,5	6,1
бе-бе	2,0	2,1	1,5	3,8	4,7
бе-7е	1,6	1,9	1,8	-	1,5
5e-8e	_	3,2	2,4	2,2	3,4
бе-8е	_	3,1	2,1	2,1	3,4
7e-8e	_	13,7	13,0	13,9	15,5
бе-9е	-	4,5	3,0	^	'
8e-8e	_	13,9	13.2	14,9	16.6
9e-9e	-	17,0	16,7		
7e-7e)					
5e-7e	Les deux forme	s ne sont pas com	plètement sépa	rées	

Tableau 4. différence d'indice de rétention entre les 2 formes stéréomères à 100°

Fig. 1. Différences d'indices de rétention entre les composés méso et dl en fonction du nombre d'atomes de C dans le cycle. Phases liquides: ○ MBMA, △ Ap-L. Les composés symétriques sont en noir, les composés asymétriques en blanc.

4.2. *Phases*. En classant les phases par ordre d'indice croissant pour un même corps, on obtient la séquence suivant:

 I_{R} (SQ) $< I_{R}$ (ApL) $< I_{R}$ (DC 550) $< I_{R}$ (R) $< I_{R}$ (MBMA) $< I_{R}$ (TCEP)

Le cas de TCDBP est intéressant dans le sens qu'il a une polarité très faible face aux cycloalcanes $I_R(SQ) < I_R(TCDBP) < I_R(ApL)$ et une polarité moyenne vis-àvis des cycloalcènes I_R (DC550) $< I_R(TCDBP) < I_R(R)$. Ceci est dû essentiellement au fait qu'il présente une «polarité» pour les acides de *Lewis*. (Dans notre cas l'acide de *Lewis* est simplement un carbone lié par une double liaison).

En reportant l'indice de rétention des cycloalcanes et cycloalcènes sur une phase en fonction de l'indice de rétention des mêmes corps sur une autre phase, on trouve les points alignés sur une droite, pour chaque série (fig. 2). La pente de ces droites

Fig. 2. L'indice de rétention des cycloalcanes (ronds blancs) et cycloalcènes (ronds noirs) sur différentes phases liquides en fonction de leur indice sur squalane --- sur Ap-L, --- sur MBMA, $-\cdots$ sur R, $-\cdot-$ sur TCEP.

est très voisine de 1 (1,02–1,05); leur différence n'est pas significative pour la polarité, à l'exception de TCEP (pente 1,20). L'ordonnée à l'origine (C_0) de ces droites peut nous donner un chiffre de polarité relative avec le SQUALANE comme référence, on trouve les échelles suivantes:

		SQ	ApL	DC 550	TCDBP	R	MBA	TCEP
	(cycloalcane	0	43	62	16	63	80	139
polarite selon	cycloalcène	0	18	32	36	48	53	152

Cette liste confirme ce qu'on déduit à première vue, c'est-à-dire qu'il y a une croissance régulière de la polarité dans l'ordre des phases considérées et un saut brusque pour la dernière (TCEP).

De même avec les composés bicycliques, on peut les aligner dans de mêmes graphiques, en obtenant 3 droites selon le nombre de doubles liaisons dans les cycles (fig. 3).

La pente pour les bicycloalkyles est presque constante (1,04-1,09) de même pour les bicycloalcényles $(0,97 \ge 1,04)$ et les cycloalkyl-cycloalcényles (0,93-0,97). Il est difficile de tirer un chiffre de ces droites pour définir une polarité; car finalement on calcule une droite avec 4 points, de C₁₀ \ge C₁₆ et on cherche l'intersection avec l'axe C₀.

Fig. 3. Indices de rétention des composés bicycliques sur différentes phases liquides en fonction de leur indice sur Ap-L. En noir: bicycloalcényles, en noir et blanc: cycloalkyl-cycloalcènes, en blanc: bicycloalkyles. \Box : sur TCEP, Δ : sur MBMA, \bigcirc : sur R, \bigtriangledown : sur squalane.

5. Conclusions. – Cette étude systématique confirme certaines valeurs trouvées auparavant. Elle a cependant une certaine limite dans le fait que la nature chimique exacte des diverses phases étudiées est mal connue. Il est donc difficile de trouver des rapports thermodynamiques facilement généralisables. Néanmoins, elle met en évidence de façon qualitative 2 types d'influences sur les indices: la structure cyclique et les doubles liaisons carbone-carbone.

Nous remercions le Fonds National pour l'appui donné à ce travail.

BIBLIOGRAPHIE

- [1] E. sz Kováts, Helv. 41, 1915 (1958).
- [2] M. L. Peterson & J. Hirsch, J. Lipid Res. L 132 (1959).
- [3] «Gas Chromatographic Data Compilation», ASTM No DS25A, Philadelphia, 1967.
- [4] W. O. Reynolds «Gas Chromatographic Retention Data», Preston Technical Abstracts Co., Evanston, 1966.
- [5] R. Kaiser, «Chromatographie in der Gasphase». Band III, Bibliographisches Institut, Mannheim 1969.
- [6] R. A. Hively & R. E. Hinton, J. of Gas Chromatography 6, 205 (1968).
- [7] J. Hoigné, H. Widmer & T. Gäumann, J. Chromatography 11, 459 (1963).
- [8] L. S. Ettre & K. Billeb, J. Chromatography 30, 1 (1967).
- [9] D. A. Tourres, J. Chromatography 30, 357 (1967).
- [10] E. sz Kováts dans «Advances in Chromatography», Vol. I, J. C. Giddings & R. A. Keller (réd.), Marcel Dekker, New York 1965.